
IS&T’s 1999 PICS Conference
Color Appearance Matching Based on
Color Constancy Theory

Masato Tsukada, Johji Tajima
C&C Media Research Laboratories, NEC Corporation

Kawasaki, Kanagawa/Japan

Hironobu Yoshikawa, Hirohisa Yaguchi
Department of Information and Image Science, Chiba University

Chiba, Chiba/Japan
l
o
o

th
t
n
r
n
n
e

lo
n
t
le
e
a

l
 

l
h
v

[3
 a
th
a
 
 e

ls,
or

ay
al
ay

e
ad
cal
,

the
ne
are
nt
.
or
her

ct
bly
er

g
r

a
ed
Abstract

A new color appearance matching based on co
constancy theory is developed. In order to achieve c
appearance matching between different color devices wh
whites are quite different, the method recovers 
hypothetical surface reflectances of objects and 
hypothetical spectral power distribution of the illuminatio
in a scene. The surface reflectances are changed acco
to illumination changes in the algorithm. It requires 
complicated calculation and gives good color appeara
matching. Experiments show the validity of the propos
method.

Introduction

 With recent, rapid advances in color imaging, co
matching between devices has become an increasi
important issue. In most CRT displays on the market 
original white is set to bluish white (e.g. 9400K), whi
printers produce colors for the illumination D50 (i.
5000K). An appearance matching method needs to be 
to accommodate such differences.

In most current color management frameworks, co
transformation is based on colorimetric matching, which
conducted in terms of XYZ, L*a*b*, or L*u*v* values. Even
when these values are matched, however, the co
themselves may not appear to the human eye to be matc

A number of different color appearance models ha
been proposed to replace colorimetric matching[1][2]
[4][5][6][7]. In these models, given tristimulus values for
stimulus and data about viewing environment, 
brightness and colorfulness of the stimulus, which 
absolute values in human color appearance, can
calculated by modeling color appearance phenomena,
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the Stevens effect and the Hunt effect. These mode
however, consist of complicated equations to model col
appearance phenomena and their computational costs m
be high. When we consider color matching on person
computers, however, we doubt whether this is the best w
to use these models.

We propose a new method for color appearanc
matching based on color constancy. In the method, inste
of modeling color appearance phenomena, the hypotheti
spectral power distribution of the illumination in a scene
obtained from white’s chromaticity of the color device
which reproduces the scene, is calculated. Second, 
hypothetical surface reflectances of all objects in the sce
are obtained. These hypothetical surface reflectances 
used to calculate corresponding colors under differe
illumination. The computational cost is comparatively low
Experiments show that our model achieves better col
appearance matching between different devices than ot
color appearance models.

Color Constancy

In Figure 1, the incident light E(l) is the product of the
spectral power distribution I(l) of a light source and the
surface reflectance O(l) of an object. Accordingly, if the
illumination changes, the recognized color of the obje
should be changed. Human beings, however, can sta
recognize the color of an object as the same color und
different illuminations. The visual function, with which we
can stably recognize an object color without bein
influenced by an illumination change, is called “colo
constancy”.

Color Matching Algorithm

In order to approximate the color constancy on 
computer, a number of methods have been propos
48
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Fig.1 A Path of light 

[8] [9][ lo]. In the color constancy problem, the goal is to 

recover the spectral power distribution of the illumination 

and the surface reflectances of all objects in a scene from 

RGB values observed as an image. 

RGB values for an object in a scene are expressed by 

R = jroo(n)s,(n)d;l p 

G = 1 I(A)O(A)S, (A)dA p (1) 

B = ~Z(A)O(A)S,(n)dA 9 

W) is the spectral power distribution of the 

illumination in the scene, o(n) is the surface reflectance of 

the object, and s,(n), s (A) and 
G 

s (;2) are the spectral 
B 

sensitivities of sensors. Generally, the sensitivities of 

sensors are prior known in the color constancy problem. In 

order to solve I(A) and o(n) assumptions are needed in 

color constancy theory. 

Computational theories of the color constancy are based 

on the assumption that the spectral properties of an object 

and its illumination can be recovered from the color of the 

light incident the observer. It is mathematically 

spectral power impossible, however, to restore the 

distribution of the illumination and the surface reflectances 

of objects from RGB values in the image. In order to make 

the problem solvable, a finite dimensional linear model is 

used. The model assumes that most spectral properties of 

illuminations and objects usually show relatively smooth 

curves and the spectral properties can be represented with 

the weighted sum of a small number of basis functions. In 

fact, daylight can be represented well with the weighted 

sum of an average vector and the first two principal 

component vectors (CIE daylight illuminant). 

In order to apply the color constancy to color matching 

in human vision, we propose the following assumptions. 

Assumption 1 

In human vision, the surface reflectance of an object in 

a scene is inferred under recognition that white in a scene is 
perceived as its nearest CIE daylight illuminant. 

3434
Assumption 2 

Most spectral properties of objects and illuminations 

show comparatively smooth curves. We can model them as 

the weighted sum of a particular set of a few vectors. 

As to the first assumption, unfortunately, no one has yet 

physiologically elucidated the detailed mechanism of 

human color recognition. We feel, however, that the 

assumption should be appropriate when we consider that 

human brains learn from experience that objects’ colors look 

similar under different colors of daylight by recovering their 

surface reflectances. 

In order to make the color constancy problem solvable, 

we introduce another assumption below. 

Assumption 3 

White in the image is equal to the illumination color in 

the scene. 

By using Assumption 1 and the prediction equation for 
spectral power distribution of CIE daylight illuminant, the 
spectral power distribution of illumination in the scene can 

be calculated. The prediction equation for spectral power 
distribution of daylight illuminant at an arbitrary correlated 

color temperature T,, is described below. 

[Calculation Step] 
1) Calculate the chromaticity of daylight illuminant at an 

arbitrary correlated color temperature T, by equations 

(2) through (4). 

a) 4000 5 Tcp 2 7000 

x - -- 
P 

46o7o1o9+29678~+009911~. 

Tc:, l Tc; ’ cp ’ 

b) 7000cT 125000 ‘P 

(2) 

lo9 
‘Oh + 0.24748- + 0.237040 X, = -2.0064,-+ 1.9018- 

lo3 

TLI, TLp TLI, 

(3) 

YP = -3.000~; + 2.870~~ - 0.275 
(4) 

2) Recover a spectral power distribution of the daylight 

illuminant I@) by 

where M, and M, are coefficients represented as 

- 1.3515 - 1.7703 + 5.9114 M, y, = X, 
0.0241 + 0.2562 x, - 0.7341 y, 9 @) 
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Fig. 2 Average and basis vectors for CIE daylight illuminant. 

M, = 
0.3000 - 31.4424x, + 30.0717 y, 

’ 
(7) 

0.0241 + 0.2562 x, - 0.7341 y, 

where li (A) s (i=O,1,2) are the average vector and basis 

vectors shown in Figure 2. 
Spectral power distribution of daylight illuminant 

corresponding to a correlated color temperature of a color 
device’s white can be recovered. If the color device’s white 
lies within a color distribution of CIE daylight illuminant, 
the spectral power distribution can be recovered from the 
chromaticity of the white, not from the correlated color 
temperature. 

We consider the spectral power distribution of daylight 
illuminant as a hypothetical spectral power distribution 
(HSPD) of illumination 1 (A) in the scene by using 

f 

Assumption 3. Let us denote a surface reflectance of an 
object as a hypothetical surface reflectance (HSR) 0, (A). X, 

Y and 2 values at each pixel in the image are given by 
Equation (8). 

X = 1 I,. (A)O, (A)x(n)dA, 

2 = 1 I, (apf (a) i(a)da, 

where i(n) , y(A) and i( 2) are color matching functions 

which are known. Thus, Equation (8) is the observation 

equation for 0, (A). 

Because the HSR of an object is originally a continuous 

function of the wavelength 3L in visible light, it is impossible 

to solve it analytically from Equation (8). However, based 

on Assumption 2, it is possible to model the HSR with a 
small set of parameters: 

0, (2) = 0, (A) + a,o, (A) + a,o, (A> + a,o, (A) (9) 

where 0, (A) is an average vector and ui (A) s (i=1,2,3) are 

the first three principal component vectors obtained from a 

large number of object colors by principal component 
analysis and known parameters. The weighted coefficients 
ai (i=1,2,3) are unknown parameters presenting the color of 
an object. 

33
______._..._..._..______.__._____._._._...__._._! 

where M (x,Oi) (i=O-3) represents an integral term 

I 
$(Qo,(n>x(n>&. We can recover HSRs of all objects 

in the scene by calculating characteristic parameters ai for 

all pixels in the image. 
One goal in the color matching problem is to obtain a 

color (X’, Y’ , 2’) on a target color device that corresponds 

to an input color on a source color device. The tristimulus 
values (X’, Y’, 2’) under an arbitrary illumination 1,. ‘(A) 

can be calculated by substituting I,‘(A) for 1, (2) in 

Equation (8). 

x~=jr~n)o,(n).i(ajda 

z’= II, ‘(ajo, (a) i(ajda 

Advanced algorithm 

An observation equation can be made by substituting 
Equation (9) for 0 

f 
(A) in Equation (8). In this equation, we 

can compute each of the integral terms in advance since 
basis vectors for surface reflectance, the HSPD of 
illumination 1, (A), and human color matching functions 

are known. The equation becomes a set of three 
simultaneous linear equations with three unknown 

parameters a.. We call parameter a a characteristic 
1 i 

parameter. 

al 

:II 
Ww,) WV,) M(x,o,) -l x -Icll(x,o(-J 

a2 = WY4) M(Y,O,) WYP,) 

a3 WWQ WZP,) Wz,o,) :: 1 y -WY&J 
(10) 

2 - Wz,o,) 

(11) 

The basic algorithm for color matching based on color 

constancy theory was described. The algorithm can be 

applied in cases where complete chromatic adaptation is 
effective. The human color recognition mechanism is very 

complex, however, and is subject to many color appearance 

phenomena. For example, it often fails to adapt to a white 
displayed on a monitor in a dark room. Most color 

appearance models allow for these color appearance 

phenomena by predicting absolute values on color 
appearance we perceive in our brains. Let us consider the 

case where we transform an input color of an object under 

Illumination 1 to a corresponding color under Illumination 2. 
In color appearance models, color appearance values of the 
input color are calculated and then the corresponding color 

is obtained from the color appearance values by the inverse 
transformation. 

We developed a new method to achieve good color 
appearance matching between color devices whose 

correlated color temperatures of white are quite different, 

e.g. 9400K and 5OOOK. Our method calculates a color 

5050
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corresponding to an input color in a way different fro
color appearance models. As for a complete white un
Illumination 1, HSR of the complete white )(lwfO  is

recovered as white from the tristimulus value (Xw, Yw, Zw) of
the white and HSPD of Illumination 1. On the other ha
HSR of the complete white )(' lwfO  is recovered as no

white from the tristimulus value (Xw, Yw, Zw) and HSPD of
Illumination 2. That is, )(lwfO  is different from )(' lwfO .

We assume that a human would predict HSR of a w
under Illumination 2 which would match a white und
Illumination 1, that is, a mixture of )(lwfO  and )(' lwfO .

Assumption4
In human color recognition processing, object col

are estimated to be a mixture of surface reflecta
recovered under Illumination 1 and that recovered un
Illumination 2.

Given a complete white as an input color und
Illumination 1, the tristimulus values (Xw, Yw, Zw) are
consistent with those of Illumination 1. HSR of the wh

)(lwfO under Illumination 1 can be obtained from HSPD

Illumination 1 )(1 lfI and tristimulus values (Xw, Yw, Zw) by

using the basic algorithm.
Let us consider that the tristimulus values (Xw, Yw, Zw)

of the white are reproduced as the same tristimulus va
under Illumination 2. HSR of the white )(' lwfO under

Illumination 2 is recovered from HSPD of Illumination 

)(2 lfI and tristimulus values (Xw, Yw, Zw).

Thus two HSRs of the complete white are obtain

)(lwfO  under Illumination 1 and )(' lwfO under

Illumination 2. In order to obtain HSR of the white )(lwfmO

under Illumination 2, which matches the color appeara
of the white under Illumination 1, we introduce a mixin
coefficient MC , where 0.0£MC £ 1.0. )(lwfmO  can be

calculated by the equation below.

(12)

In this case, we hypothesize that human eyes comple
adapt to Illumination 1 but their adaptation to Illumination
is incomplete. When MC  is equal to 1.0, Equation (12
means the basic algorithm for complete chroma
adaptation.

In order to calculate HSR for a color that is not whi
we define an adjusting function for surface reflectance
wavelength in visible light. Let )(ladrf  denote an adjusting

function for surface reflectance.

,  (13)

)(')1()()( lll wfwfwfm OMCOMCO ´-+´=

)(

)(
)(
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 A HSR under Illumination 2 )(' lfO corresponding to

HSR )(lfO  of an arbitrary input color under Illuminatio

1 can be calculated by multiplying )(lfO  by )(ladrf .

)()()(' lll adff rfOO ´= (14)

Thus tristimulus values of a color under Illumination
corresponding to an arbitrary input color under Illuminat
1 are obtained by Equation (15).

llll

llll

llll
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=
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(15)

Experiments

We performed experiments to investigate the validity
our color appearance matching proposed in this pa
Hereafter, we call our color appearance matching met
the “color constancy model” for convenience. We mad
viewing booth and set two CRT monitors in the viewi
booth in a dark room as illustrated in Figure 3. Viewi
conditions followed the CIE guideline [12].

For several kinds of natural images, subjects evalu
the color appearance of the images displayed on two C
monitors whose whites were quite different. Imag
displayed on the right monitor showed original co
appearances. Images reproduced by several kinds of 
appearance models or chromatic adaptation models 
displayed on the left monitor. Subjects evaluated superio
or inferiority in color appearance matching of these ima
reproduced by these models with the original ima
displayed on the right monitor under a haploscopic view
condition. Backgrounds of the images on monitors were
to gray with a luminance factor of 0.2.

Fig. 3 Viewing booth for evaluation of color appearance
models

Reproduced Image Original Image

Viewing Booth

in a dark room

9000K5000K
6500K
351
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White of the right monitor was adjusted to 9000K and 

that of the left monitor to the same chromaticities as D50 

and D65. We examined the following seven models: 

1) von Kries 

2) CIE-L*a*b* 

3) LLAB[ l] 

4) RLAB[2] 

5) Nayatani97[4][5] 

6) CIECAM97s[6] 

7) Color constancy model (our model) 

Four kinds of natural images were prepared because the 

evaluation result for only one image was influenced by the 

contents in the image. N7 (musician), Nl (portrait), N3 

(fruit) and N6 (orchid) in ISO/JIS-SCID were used for 

evaluation. These images were appropriately converted to 

RGB images since these images were supplied as CMYK 

images. These images were hemmed with a reference white. 

The color constancy model needs basis vectors for HSR 

of objects. The basis vectors, shown in Fig. 4, were derived 

from 2763 surface reflectances of color patches printed by 

an NEC PC-PR810 dye sublimation printer with principal 

component analysis. In addition to the vectors 

experimentally used in this paper, there are many other 

basis vectors which could be used. Mixing coefficient MC 

was set equal to 0.6 in this experiment. 

We followed the method of paired comparison to 
determine the order of the model’s performance for color 
appearance matching. We made reproduced images by 
using the above-referenced seven models and displayed two 
images randomly selected from these seven images on the 
left monitor. These two images were not simultaneously but 

alternately displayed by subjects’ click operation on a 
mouse. From the two images displayed on the left monitor, 

subjects were instructed to select the image that was closer 

in color appearance to the original image displayed on the 
right monitor. 

Interval scales were calculated from the evaluation 

results of ten subjects by using the law of Thurstone’s 

-+avr +rO(A) *rl(A) +r2(A) 

I 
-0.5 ’ 

Fig.4. Basis vectors for sw$ace reflectance. 

3535
comparison judgment[ 131. First, a matrix with the elements 
of the probability P(i,j) which means that model-i is closer 
to the original image than model-j was made. Second, the 
elements P(i, j)s were converted into Z-scores Z(i, j)s by 
using a normal distribution diagram. This calculation was 

based on the assumption that human judgement on 
difference would show a normal distribution. The Z-score 
matrix consists of these Z-scores Z(i, j)s. Table 1 shows a 

sample of a Z-score matrix. Third, summations CZ(i, j)s in 
each column are calculated. Finally, the average of a CZ(i, j) 

is an interval scale for the model. 

Table 1. A sample Z-score matrix 

Model1 Model2 Model3 Model4 Model5 

Model 1 0.000 - 1.282 0.524 0.253 -0.253 

Model2 1.282 0.000 1.282 0.000 0.524 

Model3 -0.524 - 1.282 0.000 0.253 0.253 

Model4 1 -0.253 1 0.000 1 -0.253 1 0.000 1 0.842 1 

Model5 1 0.253 1 -0.524 1 -0.253 1 -0.842 1 0.000 1 

Wij) 0.758 -3.088 1.300 -0.336 1.336 

Si=CZ( i ,j) /5 0.152 -0.618 0.260 -0.067 0.273 

The interval scores are significant in that they show the 
relative degree of difference in model performance, whereas 
probability values merely show the order of model 
performance. On the other hand, differences in interval 
scales correspond to differences in human perception. The 
interval scale shows a linear relationship between the 
difference in scales and human perceptions. That is, we can 
evaluate the model performance that is consistent with 
human perception by using a method of evaluation based on 
the interval scale. 

Figures 5 and 6 show results of the evaluation 

experiment. We can see that the color constancy model, 

RLab, Nayatani and CIECAM97s, which take account of 

incomplete chromatic adaptation, produce good results for 

two monitors whose whites are quite different, i.e. 9000K 

D50 and 9000KD65, in a dark room. These results show 

that human color cognition has a tendency to fall into 

incomplete chromatic adaptation in the absence of 

information on illumination color. 

In particular, our color constancy model made the 

highest scores for all images in the 9000KD50 experiment. 

RLAB showed the next best performance. In the 9OOOK- 

D65 experiment, there is not much difference between the 

seven models; however, our color constancy model and 

RLAB produced comparatively good results. 

Four kinds of natural images were selected in this 

evaluation experiment. The results obtained for N3 (fruits) 

are obviously different from those obtained for other images. 
LLAB and von Kries, which take account of complete 

chromatic adaptation, produced especially good 

22
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Fig.5. Result for 9000K V.S. D50

Fig.6. Result for 9000K V.S. D65

results for N3 in the 9000K-D65 experiment. It 
commonly said that human chromatic adaptation fro
higher correlated color temperature to lower correla
color temperature can easily occur for warm colors. 
mainly comprises warm colors, and subjects’ co
cognition for N3 in this experiment was apparently t
result of complete chromatic adaptation.

Conclusion

In this paper, a new color appearance matching met
based on the color constancy theory is proposed. It reco
hypothetical surface reflectance of an object a
hypothetical spectral power distribution of illumination i
the scene. Furthermore, it adjusts the hypothetical surf
reflectance according to changes in illumination. Our mo
needs no complicated calculation and gives good co
appearance matching.

We believe that the algorithm is especially suitable f
use in color management systems. We are curre
applying our model to color appearance matching betwee
monitor and a printer, and anticipate we will be able 
report the results in the near future.
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