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Abstract the Stevens effect and the Hunt effect. These models,
however, consist of complicated equations to model color

A new color appearance matching based.on COIO5ppearance phenomena and their computational costs may
constancy theory is developed. In order to achieve color

appearance matching between different color devices who&€ Nigh. When we consider color matching on personal
whites are quite different, the method recovers th&omputers, however, we doubt whether this is the best way
hypothetical surface reflectances of objects and thé use these models.
hypothetical spectral power distribution of the illumination We propose a new method for color appearance
in a scene. The surface reflectances are changed accordimgtching based on color constancy. In the method, instead
to illumination changes in the algorithm. It requires noof modeling color appearance phenomena, the hypothetical
complicated calculation and gives good color appearancspectral power distribution of the illumination in a scene,
matching. Experiments show the validity of the proposedbtained from white's chromaticity of the color device
method. which reproduces the scene, is calculated. Second, the
hypothetical surface reflectances of all objects in the scene
are obtained. These hypothetical surface reflectances are
used to calculate corresponding colors under different
. : : . . illumination. The computational cost is comparatively low.
With recent, rapid advances in color imaging, Colofgyneriments show that our model achieves better color
matching between devices has become an increasingipearance matching between different devices than other
important issue. In most CRT displays on the market theolor appearance models.

original white is set to bluish white (e.g. 9400K), while

Introduction

printers produce colors for the illumination D50 (i.e. Color Constancy
5000K). An appearance matching method needs to be able
to accommodate such differences. In Figure 1, the incident light EJ is the product of the

In most current color management frameworks, colosPectral power distribution Af of a light source and the

transformation is based on colorimetric matching, which issurface reflectance @J of an object. Accordingly, if the

. e NP fllumination changes, the recognized color of the object
conducted in terms of XYZ, Bb, or Luv values. Even ghoyid be changed. Human beings, however, can stably

when these values are matched, however, the colofgcognize the color of an object as the same color under
themselves may not appear to the human eye to be matchatifferent illuminations. The visual function, with which we

A number of different color appearance models havé&an stably recognize an object color without being
been proposed to replace colorimetric matching[l][2][3]inﬂuenc’3d” by an illumination change, is called “color
[41[5][6][7]. In these models, given tristimulus values for aconstancy )
stimulus and data about viewing environment, the Color Matching Algorithm
brightness and colorfulness of the stimulus, which are
absolute values in human color appearance, can be In order to approximate the color constancy on a
calculated by modeling color appearance phenomena, egPmputer, a number of methods have been proposed
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[8][9]1(10]. In the color constancy problem, the goal is to
recover the spectral power distribution of the illumination
and the surface reflectances of all objects in a scene from
RGB values observed as an image.

RGB values for an object in a scene are expressed by

R= j I(A)O(A)S 4 (R)dA,
G = [I)OM)SG(D)dA, (1)
B= j I(A)O(A)S 5 (A)dA

where (1) is the spectral power distribution of the
illumination in the scene, O(1) is the surface reflectance of

ohiant

the object, and §,(4), §,(4) and §,(1) are th
sensitivities of sensors. Generally, the sensitivities of
sensors are prior known in the color constancy problem. In
order to solve J(A) and O(1) assumptions are needed in
color constancy theory.

Computational theories of the color constancy are based
on the assumption that the spectral properties of an object
and its illumination can be recovered from the color of the
light incident to the observer. It is mathematically
impossible, however, to restore the spectral power
distribution of the illumination and the surface reflectances
of objects from RGB values in the image. In order to make
the problem solvable, a finite dimensional linear model is
used. The model assumes that most spectral properties of
illuminations and objects usually show relatively smooth
curves and the spectral properties can be represented with
the weighted sum of a small number of basis functions. In
fact, daylight can be represented well with the weighted
sum of an average vector and the first two principal
component vectors (CIE daylight illuminant).

In order to apply the color constancy to color matching
in human vision, we propose the following assumptions.

Assumption 1

In human vision, the surface reflectance of an object in
a scene is inferred under recognition that white in a scene is
perceived as its nearest CIE daylight illuminant.

Assumption 2

Most spectral properties of objects and illuminations
show comparatively smooth curves. We can model them as
the weighted sum of a particular set of a few vectors.

As to the first assumption, unfortunately, no one has yet
physiologically elucidated the detailed mechanism of
human color recognition. We feel, however, that the
assumption should be appropriate when we consider that
human brains learn from experience that objects' colors look
similar under different colors of daylight by recovering their
surface reflectances.

In order to make the color constancy problem solvable,
we introduce another assumption below.

Assumption 3
White in the image is equal to the illumination color in
the scene.

By using Assumption 1 and the prediction equation for
spectral power distribution of CIE daylight illuminant, the
spectral power distribution of illumination in the scene can
be calculated. The prediction equation for spectral power
distribution of daylight illuminant at an arbitrary correlated

color temnerature 7T
color temperature [

is described below.

15 QOSLE

[Calculation Step]
1) Calculate the chromaticity of daylight illuminant at an
arbitrary correlated color temperature T, by equations

(2) through (4).
a) 4000<T, <7000

9 6 3
x,= —4.6070% + 2.9678% +0.09911 107 +0.244063
Tq) Tcl: p
2
b) 7000<T,, <25000
9 6 3
X, = —2.00641—(2; +1.901 8% + 0.24748£ +0.237040
T T T
p p o
3)
yp = —3.000)6,2, + 2'870xp -0.275 (4)

2) Recover a spectral power distribution of the daylight
illuminant /(4) by

I =1,(A)+MI(A)+M,I,(A) 5
where M| and M, are coefficients represented as

_ —1.3515 -1.7703 x, +5.9114 y,
' 0.0241 +0.2562x, -0.7341y, - (0
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Fig. 2 Average and basis vectors for CIE daylight illuminant.

_0.3000 —31.4424 x, +30.0717 y,
27 0.0241 +0.2562x, - 0.7341 y,

where 1,(A)8 (i=0,1,2) are the average vector and basis

(7

vectors shown in Figure 2.

Spectral power distribution of daylight illuminant
corresponding to a correlated color temperature of a color
device’s white can be recovered. If the color device’s white
lies within a color distribution of CIE daylight illuminant,
the spectral power distribution can be recovered from the
chromaticity of the white, not from the correlated color
temperature.

We consider the spectral power distribution of daylight
illuminant as a hypothetical spectral power distribution
(HSPD) of illumination 1,(4) in the scene by using

Assumption 3. Let us denote a surface reflectance of an
object as a hypothetical surface reflectance (HSR) 0,(A)- X,

Y and Z values at each pixel in the image are given by
Equation (8).

X = jlf ()0, (2) x(A)dA,

v ®

[ 1,00, ) y(2)da,

z

jzf(/l)of(,l)éu)dx,

where ;(/1), ;(/1) and E(,{) are color matching functions

which are known. Thus, Equation (8) is the observation
equation for 0,(4)-

Because the HSR of an object is originally a continuous
function of the wavelength A in visible light, it is impossible
to solve it analytically from Equation (8). However, based
on Assumption 2, it is possible to model the HSR with a
small set of parameters:

0,(4)=0y(4) +a,0, (1) + a,0,(A)+ap0,(1) (9
where ¢ (4) is an average vector and o (1)s (i=1,2,3) are

the first three principal component vectors obtained from a
large number of object colors by principal component
analysis and known parameters. The weighted coefficients
a, (i=1,2,3) are unknown parameters presenting the color of

an object.

An observation equation can be made by substituting
Equation (9) for 0,(4) in Equation (8). In this equation, we

can compute each of the integral terms in advance since
basis vectors for surface reflectance, the HSPD of
illumination 1,(A) and human color matching functions

are known. The equation becomes a set of three
simultaneous linear equations with three unknown
parameters g, We call parameter o a characteristic

parameter.

a) (M(x0) M(x0) M(x0)\ (X -M(x0,) 10)
a, |=|M(y,0) M(y,0,) M(y,05) Y -M(y,0,)

a, M(z,0,) M(z,0,) M(z,0,) Z-M(z,0,)
where M (x,0,) (i=0~3) represents an integral term

I 1, (D)o, (A);(,l)d,i. We can recover HSRs of all objects

in the scene by calculating characteristic parameters g, for

all pixels in the image.

One goal in the color matching problem is to obtain a
color (X’, Y’, Z’) on a target color device that corresponds
to an input color on a source color device. The tristimulus
values (X’, Y’, Z’) under an arbitrary illumination 1,'(4)

can be calculated by substituting 1,'(4) for I1,(4) in
Equation (8).
X'={1,'(A)0, () x(A)dA

v'=[1,'(10, (A) y(AxdA (1

Z'={1, ()0, (A z(A)dA
Advanced algorithm

The basic algorithm for color matching based on color
constancy theory was described. The algorithm can be
applied in cases where complete chromatic adaptation is
effective. The human color recognition mechanism is very
complex, however, and is subject to many color appearance
phenomena. For example, it often fails to adapt to a white
displayed on a monitor in a dark room. Most color
appearance models allow for these color appearance
phenomena by predicting absolute values on color
appearance we perceive in our brains. Let us consider the
case where we transform an input color of an object under
Ilumination 1 to a corresponding color under Illumination 2.
In color appearance models, color appearance values of the
input color are calculated and then the corresponding color
is obtained from the color appearance values by the inverse
transformation.

We developed a new method to achieve good color
appearance matching between color devices whose
correlated color temperatures of white are quite different,
e.g. 9400K and 5000K. Our method calculates a color

350



1S& T's 1999 PICS Conference

corresponding to an input color in a way different from A HSR under lllumination 25 (1) corresponding to
color appearance models. As for a complete white und

I . . . .
llumination 1, HSR of the complete white, (1) is §isr 0, (1) of an arbitrary input color under lllumination

1 can be calculated by multiplyi b .
recovered as white from the tristimulus value,(X,, Z,) of ! y MUEIPYING, (2) BY 1f4 (1)

the white and HSPD of Illumination 1. On the other hand, O;'(1) =0, (1) xrf_ (1) (14)
HSR of the complete whitg ‘(1) is recovered as not Thus tristimulus values of a color under Illumination 2
white from the tristimulus value (XY,, Z,) and HSPD of ~corresponding to an arbitrary input color under Illumination
llumination 2. That is,0 (1) is different fromp (7). 1 are obtained by Equation (15).

We assume that a human would predict HSR of a white X'=II (A0, "(A) X(A)dA
under lllumination 2 which would match a white under

lllumination 1, that is, a mixture qﬁwf (1) andoM-(,l). Y'= J'| (2O, (1) y(ﬂ,)d/l (15)
Assumption4 Z'= II ()0 '(A) z(A)dA
In human color recognition processing, object colors
are estimated to be a mixture of surface reflectance Experiments
recovered under lllumination 1 and that recovered under
lllumination 2.

We performed experiments to investigate the validity of

. . . our color appearance matching proposed in this paper.
Given a complete white as an input color under PP g prop . pap

Hereafter, we call our color appearance matching method

lllumination 1, the tristimulus values (XY, Z) are he “col del” f ) q
consistent with those of lllumination 1. HSR of the white!'® “color constancy model” for convenience. We made a

0,, (») under lllumination 1 can be obtained from HSPD ofViewing booth and set two CRT monitors in the viewing
booth in a dark room as illustrated in Figure 3. Viewing

conditions followed the CIE guideline [12].
using the basic algorithm. For several kinds of natural images, subjects evaluated
Let us consider that the tristimulus values,(X,, Z,)  the color appearance of the images displayed on two CRT
of the white are reproduced as the same tristimulus valugsonitors whose whites were quite different. Images
under lllumination 2. HSR of the white '(2) under displayed on the right monitor showed original color
lllumination 2 is recovered from HSPD of lllumination 2 @PPearances. Images reproduced by several kinds of color
12 and tristimulus values (XY, Z,). appearance models or ghromauc_: adaptation models_w_ere
. _displayed on the left monitor. Subjects evaluated superiority
Thus two HSRs of the complete white are obtainedg; inferiority in color appearance matching of these images
O,,(A) under lllumination 1 and o, '(1) under reproduced by these models with the original images
lllumination 2. In order to obtain HSR of the whitg_(1)  displayed on the right monitor under a haploscopic viewing
condition. Backgrounds of the images on monitors were set
f gray with a luminance factor of 0.2.

lllumination 1| (1) and tristimulus values (XY, Z,) by

under Illumination 2, which matches the color appearanc
of the white under lllumination 1, we introduce a mixing
coefficient MC, where 0.6 MC< 1.0. o, (1) can be

calculated by the equation below. / Viewing Booth
0,m(A)=MCx0O, (1) +(1-MC)xO', (1) (12)
In this case, we hypothesize that human eyes completely Reproduced Image i}  Original Image
adapt to lllumination 1 but their adaptation to lllumination 2
is incomplete. WhenMC is equal to 1.0, Equation (12) EJ E
means the basic algorithm for complete chromatic
. L1
adaptation.
In order to calculate HSR for a color that is not white ,
. I ) ’ 2000K (® &\ 9000K
we define an adjusting function for surface reflectance on 6500K

wavelength in visible light. Letf_ (1) denote an adjusting

function for surface reflectance.
wam(M Fig. 3 Viewing booth for evaluation of color appearance
—_— , (13) models

0, (1)

in a dark room

rfad (}“) =
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White of the right monitor was adjusted to 9000K and
that of the left monitor to the same chromaticities as D50
and D65. We examined the following seven models:

1) von Kries

2) CIE-L*a*b*

3) LLABJ[1]

4) RLABJ[2]

5) Nayatani97[4][5]

6) CIECAM97s([6]

7) Color constancy model (our model)

Four kinds of natural images were prepared because the
evaluation result for only one image was influenced by the
contents in the image. N7 (musician), N1 (portrait), N3
(fruit) and N6 (orchid) in ISO/JIS-SCID were used for
evaluation. These images were appropriately converted to
RGB images since these images were supplied as CMYK
images. These images were hemmed with a reference white.

The color constancy model needs basis vectors for HSR
of objects. The basis vectors, shown in Fig. 4, were derived
from 2763 surface reflectances of color patches printed by
an NEC PC-PR810 dye sublimation printer with principal
component analysis. In addition to the vectors
experimentally used in this paper, there are many other
basis vectors which could be used. Mixing coefficient MC
was set equal to 0.6 in this experiment.

We followed the method of paired comparison to
determine the order of the model’s performance for color
appearance matching. We made reproduced images by
using the above-referenced seven models and displayed two
images randomly selected from these seven images on the
left monitor. These two images were not simultaneously but
alternately displayed by subjects’ click operation on a
mouse. From the two images displayed on the left monitor,
subjects were instructed to select the image that was closer
in color appearance to the original image displayed on the
right monitor.

Interval scales were calculated from the evaluation
results of ten subjects by using the law of Thurstone’s

——avr —e—r0(1) —r1(1) ——r2(1) |

0.4
0.3
0.2 - —

0.1

0 Y G \
-0.1 —730
-0.2
03 \ £
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-0.5

Fig.4. Basis vectors for surface reflectance.

comparison judgment[13]. First, a matrix with the elements
of the probability P(i,j) which means that model-i is closer
to the original image than model-j was made. Second, the
elements P(i, j)s were converted into Z-scores Z(i, j)s by
using a normal distribution diagram. This calculation was
based on the assumption that human judgement on
difference would show a normal distribution. The Z-score
matrix consists of these Z-scores Z(i, j)s. Table 1 shows a
sample of a Z-score matrix. Third, summations £Z(i, j)s in
each column are calculated. Finally, the average of a £Z(i, j)
is an interval scale for the model.

Table 1. A sample Z-score matrix

j i [Modell [Model2 [Model3 |Model4 [ModelS
Modell 0.000 |-1.282 | 0.524 | 0.253 -0.253
Model2 1.282 | 0.000 1.282 | 0.000 | 0.524
Model3 -0.524 | -1.282 | 0.000 | 0.253 0.253
Model4 -0.253 | 0.000 -0.253 | 0.000 | 0.842
Model5 0.253 -0.524 | -0.253 | -0.842 | 0.000

XZ(3i,)) 0.758 | -3.088 | 1.300 | -0.336 | 1.336
S=27(i,j) /5 0.152 |-0.618 | 0.260 | -0.067 | 0.273

The interval scores are significant in that they show the
relative degree of difference in model performance, whereas
probability values merely show the order of model
performance. On the other hand, differences in interval
scales correspond to differences in human perception. The
interval scale shows a linear relationship between the
difference in scales and human perceptions. That is, we can
evaluate the model performance that is consistent with
human perception by using a method of evaluation based on
the interval scale.

Figures 5 and 6 show results of the evaluation
experiment. We can see that the color constancy model,
RLab, Nayatani and CIECAM97s, which take account of
incomplete chromatic adaptation, produce good results for
two monitors whose whites are quite different, i.e. 9000K-
D50 and 9000K-D6S, in a dark room. These results show
that human color cognition has a tendency to fall into
incomplete chromatic adaptation in the absence of
information on illumination color.

In particular, our color constancy model made the
highest scores for all images in the 9000K-D50 experiment.
RLAB showed the next best performance. In the 9000K-
D65 experiment, there is not much difference between the
seven models; however, our color constancy model and
RLAB produced comparatively good results.

Four kinds of natural images were selected in this
evaluation experiment. The results obtained for N3 (fruits)
are obviously different from those obtained for other images.
LLAB and von Kries, which take account of complete
chromatic adaptation, produced especially good
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Conclusion

In this paper, a new color appearance matching method Shoukoudou, pp34-47(1991).
based on the color constancy theory is proposed. It recovers
hypothetical surface reflectance of an object and
hypothetical spectral power distribution of illumination in
the scene. Furthermore, it adjusts the hypothetical surface
reflectance according to changes in illumination. Our model
needs no complicated calculation and gives good color
appearance matching.

We believe that the algorithm is especially suitable for
use in color management systems. We are currently
applying our model to color appearance matching between a
monitor and a printer, and anticipate we will be able to
report the results in the near future.

353



